Você conectado!

Fissão nuclear

09/01/2014 21:23

Os processos que alteram o estado ou composição da matéria são inevitavelmente acompanhados pelo dispêndio ou geração de energia. Processos comuns como a combustão produzem energia pelo rearranjo químico dos átomos ou moléculas. Por exemplo, a combustão do metano (gás natural) é representada pela seguinte reação:

CH_{4}+2O_{2}=C0_{2}+2H_{2}O

 

Neste exemplo, a energia produzida é de 8 elétrons-volt (eV). O elétron-volt é uma unidade de energia que representa o ganho de energia cinética quando um elétron é acelerado pela queda do potencial em um volt.

A mais conhecida reação nuclear é a fissão. Um esquema de fissão está representado na final do texto, na qual um núcleo pesado se combina com um nêutron e se separa em dois outros núcleos mais leves. Uma típica reação de fissão envolvendo o 235U é:

^{235}U+n\quad\rightarrow\quad ^{92}K_r+^{142}B_a+2_n+179,4\;MeV

 

em que a energia liberada é de aproximadamente 200 MeV (milhões de eletron-volt), um fator de 25 milhões de vezes superior ao da reação da combustão do metano.

A captura de um nêutron pelo 235U produz um estado excitado do 236U, o qual possui energia mais do que suficiente para dividi-lo em dois fragmentos. Por outro lado, a energia crítica para a fissão do 239U é 5,9 MeV , mas a captura de um nêutron por um núcleo de 238U produz uma energia de excitação de apenas 5,2 MeV. Assim, quando um nêutron térmico é capturado pelo 238U para formar 239U, a energia de excitação não é suficiente para que a fissão ocorra. Neste caso, o núcleo excitado de 239U volta ao estado fundamental emitindo raios gama ou partículas alfa.

Todos os núcleos com Z>83 são radioativos. Entre os vários modos possíveis de decaimento dos núcleos muito pesados (Z>90) está a fissão espontânea. Estes núcleos podem se dividir em dois fragmentos mesmo que não absorvam um nêutron. Podemos compreender a fissão espontânea usando a analogia de uma gota de líquido com cargas positivas. Quando a gota não é muito grande, a tensão superficial é suficiente para manter a gota coesa, apesar das forças de repulsão que existem entre as cargas. Existe, porém, um tamanho máximo a partir do qual a gota se torna instável e se parte espontaneamente em duas, já que a força de repulsão é proporcional ao número de cargas, que, por sua vez, é proporcional ao volume e, portanto ao cubo do raio da gota, enquanto a tensão superficial é proporcional à área da superfície e, portanto ao quadrado do raio da gota.

A possibilidade de fissão espontânea estabelece um limite superior para o tamanho dos núcleos e, portanto para o número de elementos da tabela periódica. É preciso observar que a probabilidade de fissão espontânea dos núcleos naturais é muito pequena em relação aos outros modos possíveis de decaimento. Assim, por exemplo, a meia-vida do 238U relação ao decaimento alfa de 4,5 x 109 ,anos enquanto a meia-vida em relação à fissão espontânea é 1016 anos.

O mesmo núcleo pode se fissionar de muitas formas diferentes, produzindo fragmentos de diferentes tamanhos. Dependendo da reação, também podem ser emitidos um, dois ou três nêutrons. O número médio de nêutrons emitidos na reação de fissão do 235U induzida por nêutrons térmicos é 2,4. A fissão é acompanhada pela emissão imediata de um ou mais dos nêutrons em excesso, seguida pelo decaimento beta (veja na seqüência) dos fragmentos de fissão para reduzir ainda mais o número de nêutrons. Em conseqüência, alguns nêutrons são emitidos espontaneamente imediatamente após a fissão e outros são convertidos em prótons por emissão b. A força de repulsão eletrostática faz com que fragmentos sejam arremessados em direções opostas com energia cinética elevada; colisões com os outros átomos transformam subseqüentemente energia em energia térmica. A fissão libera energia de aproximadamente 200 MeV por núcleo. Trata-se de uma quantidade muito grande de energia. Em uma reação de combustão, por exemplo, apenas 4 eV são liberados por molécula de oxigênio consumida.

O decaimento beta ocorre com a emissão de partículas beta (β), assim chamados os elétrons (ou pósitrons) com grande quantidade de energia emitidos de núcleos atômicos. Existem duas formas de decaimento beta, β- e β+. No decaimento β+ , um próton é convertido num nêutron, com a emissão de um pósitron e de um neutrino. No decaimento β- um nêutron é convertido num próton, com emissão de um elétron e de um antineutrino (a antipartícula do neutrino).

Outra importante reação nuclear é a fusão nuclear, na qual dois elementos leves combinam para formar um átomo mais pesado. Uma importante reação é:

^{2}H+^{3}H\rightarrow ^{4}H_{e}+n+17.6MeV

em que a energia liberada pela reação é próxima de dezoito milhões de eV. A fusão nuclear é um processo de produção de energia a partir do núcleo de um átomo. Este fenômeno ocorre naturalmente no interior do Sol e das estrelas. Núcleos leves como o do hidrogênio e seus isótopos, o deutério e o trítio, se fundem e criam elementos de um núcleo mais pesado, como o hélio.

Usinas termonucleares aproveitam a enorme energia liberada por reações nucleares para a produção de energia em alta escala. Em uma moderna usina de carvão, a combustão de uma libra (453,59g) de carvão produz 1 quilowatt hora (kWh) de energia elétrica. A fissão de uma libra de urânio em uma moderna usina nuclear produz cerca de três milhões de kWh de energia elétrica. É a incrível densidade da energia (energia por unidade de massa) que faz as fontes de energia nuclear serem tão interessantes.

No presente, apenas o processo de fissão é utilizado na produção comercial de energia (geralmente para produzir eletricidade). As pesquisas sobre a fusão ainda não produziram uma tecnologia de produção de energia economicamente factível.

Veja o esquema de como é feita a fissão nuclear: Utilização mundial:

 

Voltar

Pesquisar no site

© 2013 Todos os direitos reservados.