Você conectado!

Fator de produção e reação em cadeia

09/01/2014 21:50

Para que uma reação nuclear seja auto-sustentada, é preciso que, em média, pelo menos um dos nêutrons emitidos pela fissão do 235U seja capturado por outro núcleo de 235U e provoque a fissão deste segundo núcleo. O fator de reprodução de um reator, representado pela letra k, é definido como o número médio de nêutrons resultantes de fissões que produzem novas fissões.

No caso do 235U, o número máximo possível de k é 2,4, mas este número normalmente é bem menor, por duas razões principais: (1) alguns nêutrons escapam da região que contém os núcleos fissionáveis; (2) alguns nêutrons são capturados por núcleos não-fissionáveis. Quando k é exatamente igual a 1, a reação é auto-sustentada; quando k é menor que 1, a reação não prossegue. Quando k é maior que 1, o número de fissões aumenta rapidamente e a reação se torna “explosiva”. É o que acontece nas bombas nucleares.

Nos reatores nucleares para produção de energia, o valor de k é mantido muito próximo de 1, veja esquema na figura , onde os fragmentos de fissão estão representados apenas para as primeiras quatro fissões. O número médio de nêutrons produzidos é 2,5 por fissão. Neste exemplo, k = 1,6. Observe que embora existam quarenta nêutrons no diagrama, basta absorver dois destes nêutrons para que o fator de produção seja reduzido para k = 1, o valor necessário para que a reação se mantenha estável. Quando k é exatamente igual a 1, dizemos que o reator está crítico; quando k < 1, que está subcrítico; quando k > 1, que está supercrítico.

Como os nêutrons emitidos na fissão em geral têm energias da ordem de 1 MeV ou maiores, enquanto a seção de choque para captura de nêutrons é muito maior para baixas energias, a reação em cadeia só se mantém se os nêutrons perderem energia antes de escaparem do reator.

Os nêutrons de alta energia (1 a 2 MeV) perdem rapidamente energia através de colisões inelásticas com o 238U, o isótopo mais abundante do urânio natural. Depois que a energia dos nêutrons cai abaixo de 1 MeV, o principal processo de perda de energia passa a ser o espalhamento elástico, no qual um nêutron colide com um núcleo em repouso e, para respeitar a lei de conservação do momento, transfere parte de sua energia cinética para o núcleo.

Este processo de transferência de energia só é eficiente quando as massas dos dois corpos são da mesma ordem; em uma colisão elástica, um nêutron não transfere muita energia para um núcleo de 238U , que tem uma massa muito maior. Este tipo de colisão é análogo à colisão de uma bola de gude com uma bola de sinuca; a bola de gude é desviada pela bola de sinuca, mas a energia cinética permanece praticamente inalterada.

Por esta razão, costuma-se colocar um material de baixa massa atômica, como água ou grafite, conhecidos como moderador, no núcleo do reator, para reduzir a energia dos nêutrons, aumentando assim a probabilidade de fissão antes que os nêutrons escapem do reator. Os nêutrons perdem energia através de colisões com o moderador.

O uso da tecnologia de reatores nucleares para geração de eletricidade foi afetada por acidentes como o de Chernobyl (Ucrânia), criando certo receio na população mundial, quanto a sua utilização para geração de energia elétrica, mas, recentemente, vem apresentando notável nível de confiabilidade e eficiência. A grande quantidade de urânio existente no planeta poderia suprir os reatores de usinas nucleares e de pesquisas, bem como uso militar, com combustível nuclear por muitos anos, alimentando esses reatores durante sua vida útil (entre quarenta e cinquenta anos).

Representação esquemática de uma reação em cadeia do 235U, onde os fragmentos de fissão estão representados para as quatro primeiras fissões.

Voltar

Pesquisar no site

© 2013 Todos os direitos reservados.